
LightKone Reference Architecture
(LiRA)

White Paper

The LightKone Consortium

Ali Shoker, Paulo Sérgio Almeida, Carlos Baquero, Annette Bieniusa,
Roger Pueyo Centelles, Pedro Ákos Costa, Vitor Enes, Carla Ferreira,
Pedro Fouto, Felix Freitag, Bradley King, Igor Kopestenski, Giorgos

Kostopoulos, João Leitão, Adam Lindberg, Albert van der Linde, Sreeja
Nair, Nuno Preguiça, Mennan Selimi, Marc Shapiro, Peer Stritzinger,
Ilyas Toumlilt, Peter Van Roy, Dimitrios Vasilas, Georges Younes, Igor

Zavalyshyn, and Peter Zeller

This is a draft version that will be updated in the near future.
Current version: V 0.91

LiRA is funded by the H2020 Programme of the European Union through the
LightKone project.

Abstract

The LightKone Reference Architecture (LiRA) presents a novel edge ref-
erence architecture that takes advantage of decentralized lateral data
sharing and convergent vertical data semantics across a myriad of dif-
ferent edge resources. These two principles are key to bridge the existing
gaps in current edge-based proposals, namely when considering fog refer-
ence architectures, and in particular, by removing the need of centralized
lateral data sharing among components that exist in close vicinity and
promoting unified data sharing semantics across components in the edge
and the core of the system, respectively. LiRA achieves this by moving its
focus to application level semantics and exploiting them to enable conver-
gence properties for decentralized data management mechanisms. LiRA
is supported by proved and sound techniques like Conflict-free Repli-
cated Data Types (CRDTs) and Transaction Causal Consistency (TCC).
These are key to achieve fundamental properties in edge-based solutions
such as: autonomy, availability, consistency, and robustness.

LiRA is compatible with, and complementary to, cutting edge/fog stan-
dards such as the OpenFog Reference Architecture [5, 12]. To show the
practical feasibility of LiRA, this paper presents a reference implementa-
tion of LIRA, called i-LiRA, composed of a coherent collection of software
artifacts and components, that ease the use of the concepts underlying to
LiRA in the development of practical applications that take advantage of
edge computing. The paper concludes with a discussion on how the arti-
facts of i-LiRA were leveraged to implement four different edge computing
case studies across different application domains.

1

Contents

1 Introduction 3
1.1 Overview . 3
1.2 Data management problem . 6
1.3 LiRA solutions for data management 7
1.4 LiRA white paper contributions 8

2 LiRA Reference Architecture 9
2.1 Introduction . 9
2.2 Why another reference architecture? 10
2.3 LiRA Principles and Solutions 13

2.3.1 LiRA Principles . 13
2.3.2 LiRA Solutions . 15

2.4 LiRA Edge Layers . 17
2.4.1 Near edge . 17
2.4.2 Far edge . 18
2.4.3 Mid edge . 20

3 i-LiRA: an Implementation of LiRA 21
3.1 Architecture View . 21
3.2 Use-case View . 24

3.2.1 Distributed monitoring for community networks (Guifi.net) 24
3.2.2 Multi-master geo-distributed storage (Scality) 26
3.2.3 Multi-cloud metadata search (Scality) 27
3.2.4 Precision agriculture (Gluk) 29
3.2.5 NoStop RFID (Stritzinger) 31

4 Relationship to State of the Art 35

5 Final Remarks 37

Bibliography 38

2

1. Introduction

1.1 Overview

This paper motivates and presents the LightKone Reference Architecture
(LiRA) for edge computing. LiRA was designed to fill gaps in, and comple-
ment, existing standard proposals for fog and edge computing architec-
tures, such as the OpenFog Reference Architecture [5, 12] produced by
the OpenFog Consortium1, with emphasis on the data management, both
laterally (among devices located within the same fog layer) and vertically
(across components operating in distinct fog layers).

LiRA was designed and implemented by the consortium of the LightKone
European Project (https://www.lightkone.eu/), which explored the use of
state-of-the-art techniques of distributed system design to promote novel
architectures for edge and fog computing. We first define LiRA indepen-
dently of any implementation and subsequently present i-LiRA, a con-
crete implementation of LiRA that provides concrete software artifacts
that materialize the key insights of LiRA across the spectrum from cloud
to Internet of Things devices. The artifacts of i-LiRA were also success-
fully employed to materialize four different edge-enabled application case
studies proposed by the LightKone industrial members. We note that
the key insights put forward by LiRA, and materialized by the software
artifacts of i-LiRA, can easily be integrated and complement existing ar-
chitectural proposals for edge and fog computing, most notably the Open-
Fog.

Similar to other proposals, LiRA departs from the fundamental ob-
servation that many cloud computing applications operating nowadays,
exhibit patterns where (large volumes of) data is generated in the edge of
the network (by user and IoT devices) and pushed toward cloud data cen-
ters (i.e., the core of the network) for computation and storage/archival.
This scenario has become increasingly predominant with the exponential
growth of Internet of Things (IoT) applications, whose number of devices
and consumed bandwidth are still on the rise today [10]. While the com-
putational power that exists in cloud infrastructures can be scaled to
support the increasing pressure generated by IoT and other edge-focused

1The OpenFog Consortium has been incorporated into the Industrial Internet Consor-
tium (IIC) as per January 2019: https://www.iiconsortium.org/press-room/01-31-19.htm

3

https://www.lightkone.eu/
https://www.iiconsortium.org/press-room/01-31-19.htm

CHAPTER 1. INTRODUCTION

applications, the same is not true for the network infrastructures that
connects IoT devices to the cloud [25, 26], requiring measures and new
technical contributions to, on the one hand alleviate this load, delegating
some computations to the edge of the system, and on the other to allow
such applications to operate with limited connectivity to the core of the
system.

A short-term solution to this problem is to aggregate IoT sensor data
close to the (edge) locations where the data is produced – an insight
that was made popular by Fog-based architectures and found significant
adoption by industry [9, 27]. Unfortunately, this approach does not solve
the fundamental problem of having these applications depend on com-
putations (and storage) that is only available at the core of the system in
cloud infrastructures. This observation is supported by the exponential
growth of IoT that is projected to continue for at least another decade
(into the 2030s) with predictions pointing to a grand total of more that
one trillion IoT devices being connected and operating by that time [8].
The massive amounts of data that will be generated by these devices will
require massive computation and storage capabilities to be continually
available, which will not be feasible by only taking advantage of large
cloud computing infrastructures.

Instead, a paradigm shift is required, to decentralized storage and
computations across the multiple computations resource layers that ex-
ist between edge devices and cloud data centers. Shifting components
of these applications towards the edge will allow to effectively reduce the
volume of data that has to transverse networks to reach data centers,
while at the same time enabling data to be processed closer to the loca-
tion where it is generated, enabling better quality of service, namely faster
response times, for applications and end-users.

The second insight that is pursued by LiRA is that, despite the fact
that data management is a key challenge on edge and fog applications, it
is either not addressed or mostly ignored in existing proposal for edge
computing architectures. However, data management is a non-trivial
problem, and addressing it adequately at the application level imposes a
non-negligible burden on application developers, which potentially leads
to incorrect solutions. In LiRA, data management is a key aspect, with
LiRA providing simple, yet powerful, and pluggable solutions that deal
with data management, and in particular availability and consistency as-
pects of data shared and stored across different layers of the cloud-edge
spectrum at the architectural level.

Finally, while the OpenFog Reference Architecture distinguishes be-
tween fog and edge computing, by defining fog computing as an extension
of the traditional cloud-based computing model where a few components
of the architecture can reside beyond the boundaries of cloud data cen-
ters and edge computing as an alternative model that fully excludes the
cloud, LiRA presents an integrated view of both architectural models.
LiRA perceives the edge computing model as a general architectural pat-

LightKone Reference Architecture LiRA v0.91, 2019 Page 4

CHAPTER 1. INTRODUCTION

Figure 1.1.1: A typical hierarchical architecture for fog and edge computing
in an airport monitoring use case (figure taken from [12]). The diagram shows
both lateral and vertical data sharing across different airport sub-systems and
terminals at different levels of the fog hierarchy.

tern that can combine and integrate components across a wide range of
computational resources that exist between the cloud and the far edge
of the system. Due to this, LiRA addresses data management across the
full spectrum of the cloud-edge model, being compatible and a potential
extension to other proposals [1, 4, 12, 14, 22].

Departing from the architectural view put forward by the OpenFog,[12]
and depicted in Figure 1.1.1, existing solutions recognize the existence
of storage and computational resources across an hierarchy of different
levels from data centers towards the edge. These components, in typical
fog architectures, are focused on summarizing collected data from devices
located in the lowest hierarchical levels and pushing this data towards the
core of the system (i.e., cloud data centers) at the highest hierarchy level.
Data is then processed at higher levels and sent back to the network’s
edge e.g., to update actuators in a sensor-based application.

LiRA models this data flow pattern naming it a “vertical” data flow.
However, we also observe that there exist the potential to support a com-
plementary data flow among resources located in the same hierarchical
level to allow such resources to cooperate among themselves to perform
computations over that data, in a way that is independent of other hi-
erarchical level (increasing overall availability) and potentially decreas-
ing response times. LiRA names such data flows as “lateral” data flows.
Enforcing unified semantics and guarantees across these different data
sharing flows, enables the design and deployment of edge applications,
with near-real time potential, that are more general and that offer better

LightKone Reference Architecture LiRA v0.91, 2019 Page 5

CHAPTER 1. INTRODUCTION

quality of service.

1.2 Data management problem

Fog computing2 ideally combines the benefits of both the edge network
and the cloud data center, which can improve many aspects of appli-
cations including autonomy, agility, efficiency, robustness, performance,
and so forth [12]. However, all these benefits come at the cost of new data,
communication, and computation challenges due to reliability, security,
and mobility issues of the heterogeneous devices and networks in the sys-
tem. Several academic and industrial platforms and reference architec-
tures have been defined to address these challenges, including OpenFog,
EdgeX, AzureIoT, Greengrass, ECC, and MEC [4, 11, 12, 14, 15, 22]. The
main challenges are summarized by OpenFog as eight pillars: security,
scalability, openness, autonomy, RAS (reliability, availability and service-
ability), agility, hierarchy, and programmability. Data management is a
crosscutting concern that touches on most of these pillars. We define the
two main problems of data management as follows:

Problem 1 (P1): Data management at the same fog level is central-
ized. The architecture provides no defined data management directly
among lateral edge nodes, i.e., among nodes at the same level in the fog
hierarchy. A common pattern to share data in this case is to push it to
a “parent” node at a higher level. The parent node plays a centralized
data sharing role. The existence of parent nodes reduces the autonomy,
robustness, and scalability of fog applications.

Problem 2 (P2): Data management across fog levels is not consis-
tent. The architecture provides no consistent approach to share data
across fog levels, which means that applications cannot easily move from
one fog level to another without violating correctness. The consequence is
that data management solutions have to be reinvented at each fog level.
Sometimes, to improve application responsiveness and decrease latency,
loose synchronization models are used with relaxed consistency between
fog levels. Unless they are defined carefully, such models will introduce a
fundamental data inconsistency between fog levels that greatly increases
the complexity of building and managing correct applications.

None of the current fog reference architectures, mentioned above, pro-
pose explicit solutions to these problems despite their importance for cor-
rect and scalable fog applications. Solving P1 would keep the data in close
proximity to its source and nearby nodes, thus avoiding extra time delays,
communication failures and overheads, and security threats. Solving P2

2For brevity, we will use the term edge computing when addressing a single fog level.

LightKone Reference Architecture LiRA v0.91, 2019 Page 6

CHAPTER 1. INTRODUCTION

would reduce the complexity of building fog applications and improve
their autonomy and mobility across different fog levels without compro-
mising correctness. With respect to the eight pillars put forward by the
OpenFog, solving P1 and P2 would simplify application development by
addressing several requirements and properties, specifically scalability,
autonomy, availability, hierarchy, and programmability.

1.3 LiRA solutions for data management

The LightKone Reference Architecture (LiRA) provides simple and power-
ful solutions to P1 and P2 based on two principles:

• Convergent data management maintains data consistency automat-
ically, i.e., without programmer intervention, over all nodes across
and within fog layers.

• Transactional causal consistency (TCC) extends convergent data man-
agement to application-specific functionality by providing conver-
gence for applications that use transactions.

This gives two levels at which LiRA can be used by developers to build
fog applications. The first level, convergent data management, is mostly
transparent to the developer. It is easy to support by using the appro-
priate software components that implement convergent data types. The
second level is made available to the developer through a database that
provides standard transactional API and supports TCC. In i-LiRA, Anti-
doteDB provides these features together with extensions for fog comput-
ing.

Both principles are based on scientific innovations developed within
LightKone and related projects. We build on existing convergent data
types called CRDTs (Conflict-free Replicated Data Types) [23]. These cur-
rently enjoy widespread industrial use inside large databases. We extend
CRDTs to directly support edge and fog computing at all layers. In ad-
dition, we extend CRDTs to support TCC that guarantees the convergent
semantics across fog layers by supporting transactions over CRDTs and
causal snapshots [2]. This simplifies applications because they can exe-
cute operations correctly at any fog layer independent of the programming
model (which can be either data- or event-oriented). The convergence
provided by CRDTs and their extensions gives the efficiency of eventually
consistent storage combined with a consistency model that is almost as
easy to program as a strongly consistent storage. The implementation
of i-LiRA presented in Chapter 3 showcases software artifacts that illus-
trate both principles and that cover the whole spectrum from cloud to
edge. These artifacts are freely available under open-source licenses, for
download, study, and use.

Through convergent data management and transactional causal con-
sistency, LiRA provides solutions to both P1 and P2:

LightKone Reference Architecture LiRA v0.91, 2019 Page 7

CHAPTER 1. INTRODUCTION

Solution 1: Decentralized lateral data sharing. LiRA allows edge nodes
to share data laterally without depending on nodes at higher fog levels.
This is achieved by adopting loose synchronization among edge nodes
on the same level, thus allowing any edge node to execute updates and
reads without prior synchronization with others. Although this improves
autonomy, availability, and robustness, unless properly designed it can
lead to conflicting versions among edge replicas. By using convergent
data structures, all conflicts are eliminated. This can be optionally ex-
tended by using transactional causal consistency that allows doing read
and write operations on many objects without violating the convergent
and causal semantics, and without paying the cost of strongly consistent
distributed transactions.

Solution 2: Convergent vertical data semantics. LiRA allows fog nodes
across different fog levels or on edge networks to follow relaxed consis-
tency to improve responsiveness. This can be optionally extended by
using transactional causal consistency to facilitate the compatibility of
applications across different fog layers. Applications can observe the
state (as a snapshot) and execute operations correctly at any fog level
independently of the programming model.

1.4 LiRA white paper contributions

This white paper makes the following main contributions:

• It introduces the fundamentals and principles of LiRA, the LightKone
Reference Architecture, over the entire fog spectrum from the cloud
center to the network edge.

• It presents i-LiRA: an implementation of LiRA demonstrating how
it can be materialized in practice through providing open-source
stand-alone artifacts and components that can be integrated into
other systems.

• It shows the application of LiRA to four real-world industrial use-
cases showing its feasibility to diverse classes of fog and edge appli-
cations.

LightKone Reference Architecture LiRA v0.91, 2019 Page 8

2. LiRA Reference Architecture

2.1 Introduction

There is an increasing interest in the edge and fog computing paradigms
aiming to reduce the dependency on cloud data centers. While these
paradigms bring several benefits on security, efficiency, and cost (among
others), they incur new challenges nicely summarized in the eight Pil-
lars of the OpenFog Reference Architecture (OpenFog RA) [12]: security,
scalability, openness, autonomy, RAS (reliability, availability and ser-
viceability), agility, hierarchy, and programmability. Several academic
and industrial platforms and reference architectures (RAs) like OpenFog,
EdgeX, AzureIoT, Greengrass, ECC, MEC [4, 11, 12, 14, 15, 22] have
been proposed to address these challenges. However, none of these RAs,
and in particular OpenFog RA1, sufficiently tackled the data management
issues in the fog and edge applications.

State of the art fog solutions left two main data management prob-
lems: (P1) centralized lateral data sharing at the same fog level and
(P2) inconsistent vertical data management of fog applications across
the different fog levels. P1 impedes the full autonomy and robustness of
edge applications and increases latency. P2 significantly increases the
complexity and cost of developing fog applications that maintain correct
semantics while moving across fog levels.

The LightKone Reference Architecture (LiRA)2 bridges the above gap
by introducing two solutions. The first solves P1 through introducing de-
centralized lateral data sharing (Solution 1) through convergent data
replication among edge nodes at the same fog level. The second solution
addresses P2 through introducing convergent vertical data semantics
(Solution 2) across the fog levels by specifying a unified data semantics
and using data convergence techniques as well.

Both solutions build on the use of relaxed data consistency that is
key to reduce the response time of applications. This is possible since
a relaxed consistency model allows for concurrent writes without prior

1OpenFog is the most comprehensive RA that is a joint effort of a large consortium of
leading industry and academia (OpenFog Consortium and the IIC). It has been recently
adopted as an IEEE standard [5].

2LiRA is an outcome of the LightKone EU project (www.lightkone.eu).

9

CHAPTER 2. LIRA REFERENCE ARCHITECTURE

Figure 2.1.1: The limitations and advantages of using the Edge versus Cloud
in the Airport Visual Security use case (source OpenFog [12]).

synchronization. However, this often leads to conflicting data versions on
different replicas which requires an automatic conflict resolution tech-
nique. In LiRA, convergence is guaranteed through using (1) Conflict-
free Replicated DataTypes [24] and potentially (2) Transactional Causal
Consistency (TCC) [2] for fog applications that require transactions over
CRDTs and causal snapshots. LiRA uses these techniques to improve
four main properties: Autonomy, Availability, Consistency, and Robust-
ness, while acknowledging the importance of other Pillars of fog comput-
ing applications [12].

In this section, we introduce LiRA’s solutions and principles starting
by justifying the need for LiRA. In the following sections, we demonstrate
the feasibility of LiRA through presenting a reference implementation,
i.e., i-LiRA, and four different fog use case discussions.

2.2 Why another reference architecture?

Current fog and edge reference architectures [4, 11, 12, 14, 15, 22] ad-
dress the fog hardware and software stack through the entire fog continuum—
from the cloud center to the far edge. These architectures give little em-
phasis to studying the fog application data semantics and management.
This impedes fog applications from taking full advantage of the decen-
tralization in the fog or edge model. In particular, it impedes autonomy,
robustness, and increases latency. This gap is explained in the two prob-
lems P1 and P2 discussed below, and briefly conveyed in the disadvan-
tages of the “Edge-only Approach”, as highlighted by the OpenFog RA [12]
in Figure 2.1.1.

For convenience, we make use of the airport surveillance “Airport Vi-
sual Security” use case in Figure 2.2.1. This architecture arguably repre-
sents a typical fog architecture. Each fog level can be considered an edge
layer depending on the user perspective. In this very use case, the lower

LightKone Reference Architecture LiRA v0.91, 2019 Page 10

CHAPTER 2. LIRA REFERENCE ARCHITECTURE

Figure 2.2.1: A typical fog architecture in a airport monitoring use case (source
OpenFog [12]). The diagram demonstrates the need for lateral and vertical data
sharing across different airport sub-systems and terminals at different fog levels.

layer represents the Far edge layer, through which edge nodes in the
surveillance sub-systems are scattered over different services or airport
terminals.

Problem 1 (P1): Data management at the same fog level is central-
ized. A common paradigm in fog computing is to have the data retained
as close as possible to its source. The aim is to improve availability,
data privacy, and reduce the bandwidth overhead. However, the chal-
lenge arises since edge applications, at the same fog level, often require a
boarder view of the system state. This suggests some sort of lateral data
sharing, e.g., replication across different edge nodes within the same fog
level. The common practice in current RAs is to push the data to a “par-
ent” node at a lower fog level. In this fashion, the latter node plays a
centralized data sharing role, i.e., a broker to higher level nodes. Despite
being intuitive, this solution is not effective once the lower level nodes
are unavailable or the network is slow. Therefore, it does not take full
advantage of the “decentralization” properties since data will need to be
marshaled to other levels in the fog hierarchy. This induces extra delays
and dependencies which results in less autonomy.

Let us exemplify using the airport surveillance “Airport Visual Secu-
rity” use case (depicted in Figure 2.2.1). Applications can only access the
data of the local subsystem; whereas, they can observe the data of other
subsystems (or terminals) through the lower level fog nodes (e.g., servers,
gateways, etc.). This induces extra delays and potential resilience issues
as a result of centralization. A possible alternative is to adopt an “Edge-

LightKone Reference Architecture LiRA v0.91, 2019 Page 11

CHAPTER 2. LIRA REFERENCE ARCHITECTURE

only Approach” [12] to get rid of this centralization. Nevertheless, this is
considered a limitation as clearly highlighted in the OpenFog RA [12] (see
Figure 2.1.1). Therefore, a decentralized lateral data sharing technique is
lacking. Such a technique is a non-trivial task due to the known tradeoff
of Consistency, Availability, and network Partition-tolerance of the CAP
theorem [16].

Problem 2 (P2): Data management across fog levels is not consis-
tent. Solving the lateral data sharing problem is insufficient for sce-
narios where nodes do not share the same edge network or fog level.
The reason is that the traveling cost of data to other fog levels is paid
anyways. Consequently, data has to be marshaled across fog levels or
edge networks via an intermediary fog node. Again, this centralization
incurs “limitations with sharing data between airports in near real time”
as pointed out by OpenFog [12] in the airport surveillance use case (in
Figure 2.1.1). In this example, while it is efficient to have lateral data
sharing within an airport terminal (as in Figure 2.2.1), this advantage is
lost once data travels to other terminals or services via “level 3” fog nodes.

To improve responsiveness, one can resort to a relaxed consistency
model across fog levels. This is possible because relaxed consistency
allows for concurrent operations and stale reads. This may result in
conflicting versions and incompatible data semantics that impede ap-
plications from moving from one fog level to another, or from one edge
network to another. Therefore, there is a need for a consistent data se-
mantics and a technique to enforce them across fog levels. Current fog
RAs lack [4, 11, 12, 14, 15, 22] such techniques. This naturally results
in complex fog applications and increasing burden on developers.

To solve this problem, current fog RAs delegate the data management
of fog applications to a lower applicational layer, e.g., a database or cache
system. In this case, there are three options. The first is using a conser-
vative (strong consistency) model that ensures safety guarantees on the
expense of data availability at the application layer. Another optimistic
solution is to adopt an eventual consistency model in which application
semantics may be violated. In this case, the developer has to deal with
the nightmare of resolving conflicts. A third tradeoff solution in current
RAs is to use timestamped databases (e.g., Cassandra) that ensure last-
writer-wins as suggested in OpenFog RA [12]. This solves the problem
only partially being restrictive to the diverse fog application semantics.

Therefore, there is a need to specify a unified semantics for fog appli-
cations and a generic technique to ensure convergence despite changing
underlying networks. This allows building applications that are respon-
sive, correct, and compatible with different fog levels and edge networks.

LightKone Reference Architecture LiRA v0.91, 2019 Page 12

CHAPTER 2. LIRA REFERENCE ARCHITECTURE

2.3 LiRA Principles and Solutions

LiRA is a fog reference architecture that solves the two problems P1 and
P2 through two solutions: (Solution 1) Decentralized lateral data sharing
between edge nodes at the same fog level and (Solution 2) Convergent
vertical data semantics across fog levels or edge networks. Both solutions
are based on two LiRA principles and a gamma of cutting edge techniques
that we discuss in the following. Furthermore, these principles result in a
new classification for LiRA edge layers that we also present afterwards.

2.3.1 LiRA Principles

LiRA follows the following two main principles to solve problems P1 and
P2:

• Convergent data management maintains data consistency automat-
ically, i.e., without programmer intervention, over all nodes across
and within fog layers.

• Transactional causal consistency (TCC) extends convergent data man-
agement to application-specific functionality by providing conver-
gence for applications that use transactions.

The problems P1 and P2 in current fog RAs share a common problem:
centralization. This is due to relying on a lower level fog node that plays
the role of intermediary to higher level edge nodes (at the same fog level).
This impedes the full autonomy of nodes and causes high latency and
robustness issues due to single point of failures. This strongly suggests
decentralization as a viable alternative. However, decentralization can
induce a high synchronization overhead that impedes the autonomy of
fog nodes and increases the response time of fog applications. This is
referred to the known tradeoff of the CAP theorem [16]. The CAP suggests
to choose either Availability or (strong) Consistency—given the fact that
Fog networks are susceptible to network Partitions.

LiRA trades strong consistency for availability. It adopts a relaxed data
consistency model: allow an edge node to execute read and update op-
erations without prior synchronization. Synchronization is however done
in the background. Relaxed consistency is vital for fog applications that
must operate despite the unreachability of other edge nodes, or fog nodes
at other fog levels. However, this means that nodes are operating concur-
rently, which brings two main challenges on both reads and updates.

Stale reads. The first challenge is that fog applications are required to
tolerate reading stale data. New data versions can then be observed
as soon as remote updates from other nodes eventually arrive and get
merged. Throughout our research, considering diverse fog and edge use
cases (see Chapter 3.2), we concluded that fog applications often tolerate

LightKone Reference Architecture LiRA v0.91, 2019 Page 13

CHAPTER 2. LIRA REFERENCE ARCHITECTURE

reading stale data as long as: (1) the system eventually converges and (2)
causal consistency is preserved.

Conflict resolution. Executing concurrent updates on the same (repli-
cated) object can lead to divergence among its replicas in different edge
nodes. This requires a conflict resolution technique that eventually leads
to convergence. In LiRA, convergence is maintained in an automatic fash-
ion through the use of Conflict-free Replicated DataTypes [23] (CRDTs)
that are widely adopted in the geo-replicated data industry3. In a nut-
shell, CRDTs are replicated data structures, e.g., Counters Sets, Maps,
Graphs, etc. CRDTs are mathematically proven to converge when com-
mutative, or designed to be so, operations are eventually propagated and
applied to all system replicas.

Causality. Even under relaxed consistency, LiRA tries to maintain the
strongest guarantees possible in the fog. Therefore, it promotes the
causal consistency model. This is the strongest consistency model that
can be maintained in an Available-Partition-tolerant (AP) system [6]. Causal
consistency helps designing fog applications with reasonable happens-
before [17] semantics: if event A happened before B, then the effect of
A must be observed before that of B. Causal consistency is ensured for
CRDTs through the support of underlying causal delivery middlewares
like Reliable Causal Broadcast (RCB) or anti-entropy protocols [23, 24].

CRDTs can significantly reduce the burden on application developers,
provided the presence of the underlying communication protocol. How-
ever, there are cases where multiple objects shall be read and updated at
once in a transactional manner. LiRA makes use of Transactional Causal
Consistency (TCC) [2] that allows applying read and write operations on
many objects without violating the causality semantics. This reduces the
cost of classical strongly consistent Distributed Transactions without giv-
ing up the strongest possible guarantees under relaxed consistency. TCC
allows applications to observe the state (a snapshot) that is causally con-
sistent with a previously observed state. This is especially useful to build
fog applications compatible with different fog levels or edge networks as
explained later.

The use of these principles is key to ensure the availability and cor-
rectness of data in edge networks. This also brings more autonomy to
edge nodes that can now operate on their own data replicas to serve read
and update operations without prior synchronization with other nodes in
the edge network. This paves the way to build more robust edge networks
as it minimizes the dependency on nodes in other fog levels or cloud data
centers. Finally, TCC together with CRDTs significantly reduce the bur-
den on fog application developers. Developers can hence simply use a

3Few examples on “Industry use” of CRDTs can be found here: https://en.wikipedia.
org/wiki/Conflict-free replicated data type.

LightKone Reference Architecture LiRA v0.91, 2019 Page 14

https://en.wikipedia.org/wiki/Conflict-free_replicated_data_type
https://en.wikipedia.org/wiki/Conflict-free_replicated_data_type

CHAPTER 2. LIRA REFERENCE ARCHITECTURE

datatype (that ensures the required semantics) without delving into the
complexity of maintaining convergence under concurrency.

2.3.2 LiRA Solutions

(a) Solution 1: Decentralized lateral data sharing

To solve the centralization problem (P1) in state of the art edge RAs, LiRA
enables decentralized lateral data sharing among edge nodes (of the same
fog level). Data updates are no longer pushed to a lower level fog node. An
object is however fully replicated over the edge nodes. Applications can
do updates and reads without prior synchronization, thus boosting au-
tonomy and availability. Nodes propagate updates directly to each other
in the background. This keeps the edge network operational despite the
unreachability of nodes in other fog levels. In our example, depicted in
Figure 2.2.1, the edge (camera) nodes of the surveillance cameras net-
work can share data directly without referring to level-2 fog nodes (i.e.,
routers) as intermediaries.

Decentralization is made easy following the above LiRA principles. Us-
ing CRDTs, the application developer is only required to choose the CRDT
datatype according to the desired semantics of the application. Since
CRDTs automatically resolve conflicts, the developer is not required to
delve into the concurrency details. Even the underlying communica-
tion protocol is transparent to the developer. In the case where multiple
CRDT objects are managed together, the developer can resort to using a
database that provides TCC, e.g., AntidoteDB [13] in i-LiRA. As long as
the API of the database is standard, the developer can achieve the ex-
pected application semantics even if multiple objects are updated or read
at once.

(b) Solution 2: Convergent vertical data semantics

LiRA solves problem (P2) through ensuring data convergence when a re-
laxed consistency model is used across fog levels or edge networks. This
reduces the complexity of building responsive fog applications that can
move from one edge network to another without anomalies. Indeed, al-
though Solution 1 solves the centralization problem within an edge net-
work, the data management outside that network must go through lower
fog levels. Having a single node or multiple nodes that are strongly syn-
chronized at a lower level is undesired: it will incur response delays
and reduce robustness when node and network (partition) failures oc-
cur. LiRA requires these very nodes at the lower layer to follow a relaxed
consistency model as well. In this fashion, edge networks at the same fog
level are always decentralized and higher level nodes may only need to
communicate with one lower level node (likely the closest one).

In our example, depicted in Figure 2.3.1, there are four fog nodes at

LightKone Reference Architecture LiRA v0.91, 2019 Page 15

CHAPTER 2. LIRA REFERENCE ARCHITECTURE

Figure 2.3.1: A typical fog architecture in a airport monitoring use case (source
OpenFog [12]). The diagram shows the four Far edge regions where nodes are at
a close proximity.

level 3. In LiRA, these nodes belong to a single decentralized edge network
following the LiRA principles, explained above. Each one is assumed to
be at a closer proximity of three higher level nodes, as shown in regions
A, B, C, and D. At the higher level, there are 12 edge networks. Each edge
network is decentralized following the LiRA principles. In the inter-edge-
network case, one can envision each subsequent three edge networks,
e.g., in region A, at this level accessing a single fog node in the lower level
(Level 3). This allows edge nodes at the highest level to access data in
other edge networks through the intermediary lower node at level 3 with-
out prior synchronization with other level 3 nodes. This gives these nodes
higher autonomy and robustness against potential network failures.

While applications accessing nodes within each region (e.g., A, B, C
and D in Figure 2.3.1) maintain the correct causal semantics, this is no
longer true as an application moves from one region (e.g., A) to another
(e.g., B). LiRA suggests common (causal) semantics for applications in all
layers being the strongest model possible in AP systems. To facilitate this
process, LiRA optionally suggests using a database with a standard API
that provides data convergence and TCC. Data convergence is maintained
using CRDTs in order to have a correct fog service. On the other hand,
TCC allows application semantics to be consistent as they move from
one edge network to another. In TCC, applications observe a snapshot
of the state that is causally consistent with a previously observed state
everywhere. As demonstrated in i-LiRA, in Section 3, AntidoteDB [13]

LightKone Reference Architecture LiRA v0.91, 2019 Page 16

CHAPTER 2. LIRA REFERENCE ARCHITECTURE

is an example of such a database. This reduces the cost of building
applications tailored for each edge network alone. It also reduces the
burden on developers who can now delegate the hard consistency work
to the database.

2.4 LiRA Edge Layers

Although the above LiRA principles are fog level-agnostic, LiRA defines
another classification composed of Near edge, Mid edge, and Far edge
layers, conveyed in Figure 2.4.1. The identified classification is more rel-
evant from an application semantics perspective—that LiRA emphasizes.
(Notice that an edge layer can subsume multiple fog levels.) Although
these layers are specified according to their proximity to the cloud cen-
ter, they share common workflows, communication patterns, computa-
tional models, and hardware properties. This aims at making LiRA more
feasible to real implementations as it helps using data, communication,
and computational abstractions that are convenient to each layer. As we
demonstrate in Section 3, this classification simplified the reference im-
plementation i-LiRA by building artifacts tailored for the three layers. The
important property is that LiRA principles are always maintained within
a single layer or across layers.

To explain the LiRA edge layers, we present some of the characteristics
that are common for each layer, focusing on: workflows, communication
patterns, computational models, and hardware properties. We convey
these details in Figure 2.4.2 as well. For convenience, we point to the
LiRA use cases as concrete examples demonstrating the soundness of
LiRA edge classification. Therefore, the reader may opt to refer to Sec-
tion 3.2 for more details on use cases’ description and specification.

2.4.1 Near edge

This layer is the closest to the cloud center. It considers edge networks
having abundant resources in terms of computation, storage, and band-
width (see Figure 2.4.2). Therefore, Near edge is assumed to handle
heavy loads of data either to store or process. LiRA proposes storing
data in highly available convergent databases that guarantee LiRA prin-
ciples. The data is then computed through running well-known batch or
stream processing tools, e.g., Hadoop, Spark, etc. This allows the auto-
nomic processing of data being only dependent on the local or close-by
database node.

On the other hand, since a Near edge node is close to the lowest level
in the fog hierarchy, it plays a role similar to a server or cloud center
in the server-client system model. Therefore, although Near edge nodes
share data laterally, the common workflow is often to have a Near edge
node receive requests from the other edge layers (to store or compute),

LightKone Reference Architecture LiRA v0.91, 2019 Page 17

CHAPTER 2. LIRA REFERENCE ARCHITECTURE

Figure 2.4.1: LiRA edge layers.

and then send the corresponding replies back (if any). As explained in
Solution 2, LiRA suggests using databases that provide convergence and
TCC to reduce the delays and the complexity of fog applications moving
across fog levels or edge networks.

In addition, since the network in such cases is often reliable, some
strong network guarantees, like FIFO and fixed membership, can be as-
sumed. This makes the presence of a reliable causal broadcast (RCB)
middleware a valid assumption. Consequently, LiRA often recommends
using the operation-based CRDT variant [7, 23] at the Near edge. The
operation-based CRDT model is generally easy and efficient as it relies on
RCB to causally propagate and deliver updates on remote edge nodes.

The multi-cloud metadata search and multi-master geo-distributed
storage use cases of Scality, in Section 3.2, are examples of Near edge.

2.4.2 Far edge

Far edge is the most distant layer from the cloud center. It usually com-
prises the cases where resources are scarce, i.e., where nodes are con-
strained on energy, computation, and storage, and the network is dy-
namic with limited bandwidth (see Figure 2.4.2). Therefore, LiRA pro-
poses to push the significant amounts of data and computation to the
other fog levels, whereas executing the affordable ones in this layer.

In this manner, LiRA supports the use of lightweight data structures
or databases that hold the minimal amount of data needed to support a
responsive fog application. Computation is also simple and based on sta-
tistical aggregation functions like the sum, average, mode, etc. If possible,
more sophisticated lightweight computation like Machine Learning tools,

LightKone Reference Architecture LiRA v0.91, 2019 Page 18

CHAPTER 2. LIRA REFERENCE ARCHITECTURE

Figure 2.4.2: A figure that shows the characteristics of LiRA edge layers (in the
three shaded tables). Within each edge layer, a type of decentralized lateral data
sharing is used (Solution 1). Across the three layers, common semantics and
possibly TCC are used to support convergent vertical data sharing (as specified
in Solution 2). The used techniques shown in each layer are rough options that
are likely to be used—although other options are possible.

e.g., TensorFlow, may be used. The rest of the data is however pushed
into the lower layers (Near edge or Mid edge) for long-lasting storage and
more powerful and accurate computation.

As for the workflow, Far edge nodes are always able to share data lat-
erally following Principle 1 and 2. Since Far edge network incurs dynamic
membership and mobility, it is hard to assume (and implement) a Reli-
able Causal Broadcast (RCB). Therefore, it is often recommended to use
a state-based CRDT [3, 24] model that is not prone to duplication since
merging updates is idempotent, and thus no need for an RCB. This is
convenient since nodes in Far edge often propagate updates in a peer-
to-peer fashion. In addition, the use of this model is tolerant to cycles
that a Far edge workflow can exhibit, and allows the use of data flows
that are automatically composable and convergent [21]. Finally, Far edge
nodes often play the role of clients to lower layers’ nodes in a server-client
model.

Considering the communication layer, there is a need for efficient pro-
tocols that are robust to network failures, mobility, and churn. LiRA
suggests the use of hybrid gossip-based protocols (e.g., Partisan [18–20])

LightKone Reference Architecture LiRA v0.91, 2019 Page 19

CHAPTER 2. LIRA REFERENCE ARCHITECTURE

that are able to (1) built efficient dissemination spanning trees to propa-
gate updates and (2) adjust to adversarial conditions (e.g., node failures)
without compromising the dissemination process. LiRA requires these
protocols to be agnostic to the underlying network layers to support clas-
sical protocols like TCP and UDP, as well as wireless ad-hoc protocols for
Internet of Things (e.g., 6LoWPAN, Zigbee, and Bluetooth).

The precision agriculture use case of Gluk and NoStop RFID conveyers
of Stritzinger, in Section 3.2, are examples of Far edge.

2.4.3 Mid edge

This layer stands as a middle layer to Near edge and Far edge at an
intermediate proximity to the cloud center. Its covers the spectrum where
edge nodes and network have limited (but not scarce) capacities in terms
of storage, computation, and network. The workflow in Mid edge can
be like Near edge or Far edge, or likely a hybrid of both. In particular,
Mid edge nodes play the role of servers to Far edge nodes and clients to
Near edge. As in the other layers, Mid edge follows the LiRA principles
to ensure lateral data sharing using CRDT variants and potentially TCC.
Importantly, Mid edge nodes must also specify the same semantics in
other layers to ensure the correct semantics of fog applications across fog
layers or other edge networks (as shown in Figure 2.4.2).

Although a Near edge network can exist as an independent network,
LiRA often uses it as an intermediate layer in the entire fog workflow.
Therefore, Far edge nodes delegate some of the resource-demanding stor-
age and computation to Mid edge nodes. The latter can then delegate
the heavy loads to the Near edge nodes for further computation or long-
lasting storage. In particular, Near edge nodes serve as mutable cache
and near-by computational resources closer to Far edge nodes. This
helps to reduce the cost and delays to the distant Near edge nodes or
cloud center—that can be unreachable.

Finally, Mid edge networks can deploy the operation-based [7, 24] or
state-based [3, 24] CRDT models depending on the case, and following
the criteria discussed in Near edge and Far edge. This also holds for the
communication protocols that can be anti-entropy hybrid gossip-based
or RCB-based. In the latter case, RCB protocols should support bigger
networks or dynamic membership.

The distributed monitoring for Guifi.net community network use case,
in Section 3.2, is an example of Mid edge.

LightKone Reference Architecture LiRA v0.91, 2019 Page 20

3. i-LiRA: an Implementation of LiRA

To demonstrate the feasibility of LiRA, we provide a reference implemen-
tation that provides software artifacts spanning the Near edge, Mid edge,
and Far edge. To make clear the distinction between the generic LiRA
view and the reference implementation discussed here, we map these
three abstract layers to three types of artifacts: Fat artifacts that focus
in supporting applications at the Near edge; Medium artifacts that focus
on the support of applications in the Mid edge; and finally Thin artifacts
that support applications taking advantage of the Far edge.

We structured the presentation according to the following “Views”:

• Architecture View: this view presents the artifacts developed in the
context of LightKone, covering the edge computing spectrum, and
how they can be combined for developing edge computing solutions.

• Use-case View: this view depicts how the artifacts and components
interplay to serve the purposes of each use-case.

We elaborate the above Views in the following explicitly referring to
concrete artifacts or software components developed during the project,
and accessible for the use of the community. The community is free to
use them or implement similar alternatives as desired. The use cases we
address are also representative of a diverse sample of edge applications,
thus, they shall not be seen as a restricted set of supported use cases,
but instead as concrete examples of the broad scope of applications being
addressed by LiRA and i-LiRA. Last but not least, the proposed implemen-
tation focuses on bridging the gap between architecture and technology
on LiRA. That said, we do not dismiss alternative technologies that are
complementary to those proposed by i-LiRA for the construction of prac-
tical systems.

3.1 Architecture View

The Architecture View (Figure 3.1.1) presents the artifacts developed in
the context of the project and how they address the challenges posed by
developing applications for edge computing scenarios. We now give a brief
overview of the type of artifacts developed and how they relate (the list of

21

CHAPTER 3. I-LIRA: AN IMPLEMENTATION OF LIRA

Figure 3.1.1: Architecture View.

artifacts is not exhaustive). A summary of these artifacts is presented in
Table 3.1.1 (at the end of this chapter). In addition, Table 3.1.2 presents
software components of useful data and communication protocols and
libraries that have been used as essential building blocks in i-LiRA arte-
facts. These components are also made available for the community to
build new artefacts.

The Fat artifacts were designed to run in nodes with substantial stor-
age and computation capacity (like nodes in public and private cloud
infrastructures and ISPs). In this context, we focused in two types of
artifacts: replicated data management systems and indexing services. A
data management system will be used by applications to store application
data. The key requirements of such system is to provide high availability,
fault-tolerance and low latency to clients. AntidoteDB is a highly avail-
able geo-distributed database that provides address these requirements.
The indexing services can be used by applications to provide efficient
search of the application information, which can be potentially stored
in different databases. Proteus is a system that can be used for such
purpose. When necessary, we expect that applications will rely in other
types of services, such as messaging services like Apache Kafka, or data
processing frameworks like Apache Spark or Apache Storm to fulfill their
needs.

The Medium artifacts were designed to run in personal nodes with
different storage and processing capacities, including smartphones, lap-
tops and users’ servers. In this context, we focused mainly on artifacts
that support data sharing and communication among devices. The key
challenges in this context are to provide low latency of interaction among

LightKone Reference Architecture LiRA v0.91, 2019 Page 22

CHAPTER 3. I-LIRA: AN IMPLEMENTATION OF LIRA

devices, high availability despite node disconnection (including discon-
nected operations) and address the specific needs of different applica-
tions. EdgeAnt provides a cache that allows applications to access data
stored in Antidote with low latency, by relying on the data stored in the
local cache. It additionally provides support for disconnected operation.
WebCure has similar goals, but it is designed to support web applica-
tions what run in browsers, thus having to address the challenges posed
by running in the browsers’ constrained environment. Legion extends
WebCure goals by supporting direct interaction among clients, for low la-
tency in interactions among clients. It also supports interaction with dif-
ferent cloud services. For applications that cannot run on top of the data
sharing services provided by the LightKone artifacts, we have developed
Partisan, a communication middleware that can be used for exchanging
data among multiple nodes. Partisan can be used by applications with
different requirements, providing an efficient communication substrate
that simplifies the development of such applications.

The Thin artifacts were designed to run in the small devices with low
memory and storage capacity, including sensor nodes, “things” and mo-
bile devices. In this context we focused in the following types of arti-
facts. First, communication services for propagating information among
nodes of the systems. Yggdrasil provides a generic framework for design-
ing distributed protocols for ad-hoc networking. For example, we have
used Yggdrasil for designing an aggregation protocol, that can be used
for collecting information from sensors and eventually propagate it to an
external service (e.g. Antidote or one of the Light-Edge artifacts). Second,
software for embedded devices. Grisp software stack provides efficient
communication for application running in ErlangVM in the Grisp nodes.
Finally, data sharing services embedded devices. In this context, Lasp
when combined with Grisp (from now on denoted as LaspOnGrisp) pro-
vides a key-value store that allows applications running in embedded
devices an high-level abstraction for data sharing.

Table 3.1.2: LightKone software components and libraries used in i-LiRA.

Component Description Features Artefact use
Delta/State CRDTs State-based data man-

agement for relaxed con-
sistency at the edge

Generic framework; many
datatypes; efficient state sync
via join-decomposition

Achlys, Le-
gion

Op CRDTs Operation-based data
management for relaxed
consistency at the edge

Generic pure op-based framework;
optimized edge-tailored datatypes;
support resets; many datatypes

AntidoteDB,
Proteus,
WebCure,
Minidote

Tagged Causal
Broadcast (TCB)

middleware for causal
consistent systems (e.g.,
used for op-based CRDTs)

Scalable to tens of nodes. End-
to-end application-level causality.
Causal stability.

Minidote
(CAMUS)

Hybrid gossip dis-
tributed communi-
cation (Partisan)

Edge-tailored alternative
for distribution layer for
Erlang.

Hybrid gossip-based with different
net topologies and various clusters;
mesh-based EVM.

Achlys

Ad-hoc communi-
cation (Mirage)

Protocol for aggregation in
ad-hoc networks

Efficient handling of variation of in-
put values using hybrid gossip pro-
tocols (Plumtree and HyParView)

Achlys, Yg-
gdrasil

LightKone Reference Architecture LiRA v0.91, 2019 Page 23

CHAPTER 3. I-LIRA: AN IMPLEMENTATION OF LIRA

3.2 Use-case View

The use-case view shows how the components described above have been
employed in several use cases in the context of the LightKone project.
These use cases cover a wide spectrum of applications and address di-
verse aspects related to data sharing and consistency. In the following,
we explain how each use case can be placed within LiRA and how the
i-LiRA artifacts address their specific requirements.

3.2.1 Distributed monitoring for community networks
(Guifi.net)

(a) Context

Guifi.net is a free and open community network with more than 35,000
active nodes. The Guifi.net Foundation operates the IP communication
network in which a large part of the network consists of interconnected
commodity wireless routers, while other parts are build with fiber op-
tics connectivity. For the management of the network, the commodity
wireless routers need to be monitored to confirm correct operation, to
measure traffic, and to detect connectivity issues and faults.

(b) Data and System model

For the monitoring of these routers, hundreds of servers are provided
inside of Guifi.net by individuals and several telecommunication organi-
zations. These monitoring servers connect periodically to the routers and
apply SNMP (Simple Network Management Protocol) to obtain operational
information of the routers. The operational information is then collected
by the monitoring servers and can be visually inspected in the Guifi.net
Web.

The Guifi.net use case poses a number of challenges. First, there is
the need to monitor each router by a set of monitoring servers to ensure
that each router is monitored despite failures in some of the monitor-
ing servers. In addition, the assignment of monitoring servers to routers
must be made dynamically, i.e., the assignment can be updated by the
servers in a self-organized and decentralized way subject to contextual
information (e.g. temporary network situation, server load, relevance of
the router). Second, the monitoring system should store and merge the
collected data to obtain a consistent view of the system in a robust and
fault-tolerant manner. To this end, the data collected by each monitor-
ing server is to be merged and stored to enable further processing and
analysis. This robust live monitoring enables the community to conduct
a deeper network analysis which allows an efficient and sustainable op-
eration of the network.

LightKone Reference Architecture LiRA v0.91, 2019 Page 24

CHAPTER 3. I-LIRA: AN IMPLEMENTATION OF LIRA

To provide reliability and fault-tolerance in the face of frequent net-
work partitions, the Guifi.net use case requires (eventually) consistent
replication of the router monitoring data to ensure its service require-
ments. Classical active-passive replication is unfeasible in this setting
since it precludes to employ locality of data and decision, and unavailable
under partitions. Further, modifications of associations between routers
and servers must merged to obtain a consistent view.

Figure 3.2.1: Distributed monitoring for community network (Guifi.net).

(c) Use-case Implementation

Figure 3.2.1 sketches the software stack that is employed in the Guifi.net
use case. As depcited, the use case uses three different i-LiRA artefacts
depending on the hardware capacity available. The devices are heteroge-
neous not only from the perspective of their their computing capability,
but also from their connectivity, maintenance, ownership and operational
policy.

In this setup, AntidoteDB serves as a convergent distributed storage
service that is deployed on a selection of servers. For the server-to-router
assignment, decentralized read and write operation are performed locally
by each server to coordinate between the servers.

The devices involved in the use case include commodity wireless routers
and also a variety of different hardware for the servers. These servers
range in Guifi.net from Single-Board-Computers such as the Raspberry
Pi, to more powerful mini-PCs up to server-class desktop PCs. For this,
Guifi.net is also experimenting Minidote as a lightweight version of An-
tidoteDB that fits such devices. At the underlying communication layer,
Guifi.net is also investigating the use of Yggdrasil as a hybrid gossip com-
munication layer. Yggdrasil provides a flexible message dissemination

LightKone Reference Architecture LiRA v0.91, 2019 Page 25

CHAPTER 3. I-LIRA: AN IMPLEMENTATION OF LIRA

framework to transmit small and large chunks of (updated) files between
far edge nodes.

3.2.2 Multi-master geo-distributed storage (Scality)

(a) Context

Scality’s object storage system (RING) supports ”active-passive” geo-replication.
Data are geo-replicated across multiple sites (data centres), but can be
updated on only one of those sites. The other sites are read-only during
normal operation, and serve as backups that are ready to take over in
case of a failure of the active site. The goal of this use case, shown in
Figure 3.2.2, is to support active-active geo-replication in Scality’s object
storage system, where data on multiple sites will be updated simultane-
ously and changes will be merged deterministically.

(b) Data and system model

The data model is that of object storage: the system stores a set of objects,
organised in buckets which form a flat namespace. Each object consists
of a key that uniquely identifies the object within a bucket, a blob of
uninterpreted data, and a set of metadata attributes, such as content
size, creation timestamp and user-defined tags. Buckets also contain
similar metadata attributes. More importantly each bucket maintains a
primary index with the keys of the objects which it contains. Data is
immutable, modifying the data creates a new version of the object, while
metadata attributes can be updated. Scality’s storage system performs
separation of data and metadata. Data is stored in Scality’s RING storage
platform while metadata is stored in a separate metadata database.

Figure 3.2.2: Multi-master geo-distributed storage (Scality)

LightKone Reference Architecture LiRA v0.91, 2019 Page 26

CHAPTER 3. I-LIRA: AN IMPLEMENTATION OF LIRA

(c) Use-case implementation

Scality is using AntidoteDB as a metadata database for Scality’s object
storage system (as shown in Figure 3.2.2). An Antidote data centre is de-
ployed on each site. Metadata attributes are stored in Antidote as CRDTs,
and Antidote handles the geo-replication and convergence of concurrent
updates. Data is always stored in the Scality RING and replicated using
the existing mechanism.

3.2.3 Multi-cloud metadata search (Scality)

(a) Context

Scality has developed an open-source framework, named Zenko, which is
a multi-cloud controller, that enables applications to transparently store
and access data on multiple public and private cloud storage systems
using a single unified storage interface. Applications can use Zenko to
access multiple cloud storage systems, including Microsoft Azure Blob
Storage, Amazon S3 and Scality RING with the same API (AWS S3 API),
and allows to additionally define policy-based data replication and migra-
tion services among these clouds.

In particular, Zenko supports federated metadata search across mul-
tiple cloud namespaces. This search service enables applications to re-
trieve data by performing queries on metadata attributes, such as file
size, timestamp of last modification or user-defined tags and others, in-
dependent of the data location.

(b) System and Data Model

Zenko’s system model consists of a small number of geo-distributed cloud
data centres, and a larger number of client devices (user servers & desk-
tops, laptops). Some of the data centres fully replicate data, representing
geo-replicated cloud storage systems, while others store disjoint datasets,
representing different cloud storage systems. A typical setup is to deploy
DC1 & DC2 as AWS S3, and DC3 & DC4 as the Scality RING, a cloud-
object storage. To coordinate this multi-DC cloud, an instance of Zenko
is deployed on one of these data centres.

Clients perform reads and writes using the S3 API either through
Zenko, which then forwards operations to the appropriate clouds (in-
band operations), or by communicating directly with a backend cloud
storage service (out-of-band operations). Clients can also perform meta-
data search queries through Zenko using an SQL-like interface.

To provide this metadata search, Zenko captures and stores object
attributes in a dedicated database, i.e., MongoDB. To this end, the meta-
data attributes are stored as JSON object and Zenko takes advantage
of MongoDB’s indexing and search capabilities to support the metadata

LightKone Reference Architecture LiRA v0.91, 2019 Page 27

CHAPTER 3. I-LIRA: AN IMPLEMENTATION OF LIRA

search. For fault-tolerance, the database is replicated within a data cen-
tre using the Raft protocol to prevent divergence of the replicas.

For out-of-band write operations, the metadata attributes are even-
tually propagated to Zenko’s metadata database using event notification
mechanisms provided by the cloud services.

Figure 3.2.3: Multi-cloud metadata search (Scality)

(c) Use-case implementation

Scality built a geo-distributed metadata service as a replacement to the
more centralized approach which gathers and stores metadata attributes
on a database placed on a single data centre. For this, Scality is using
two i-LiRA artifacts: (1) Proteus and (2) AntidoteDB, as conveyed in Figure
3.2.3.

Proteus allows to deploy a modular geo-distributed hierarchical net-
work of microservices. Each microservice is responsible for receiving
an input stream of data, optionally maintain a user-defined material-
ized view of the input steam, and provides a query service by performing
data-flow computations on the input data and/or its materialized view.
Proteus enables flexible placement of data and computations by allowing
microservices to be placed in different locations within a geo-distributed
system.

Proteus’ query-processing microservices receive write operations that
have been executed in a cloud storage system as an input stream, main-
tains a (partial) index on metadata attributes, and provides a metadata
search service using this index. These microservices are organized as a
hierarchical network that implements a geo-distributed index. The index
is partitioned, and index partitions are distributed across data centres.
Metadata search queries are executed by performing distributed com-
putations on this network: Each query is incrementally split into sim-

LightKone Reference Architecture LiRA v0.91, 2019 Page 28

CHAPTER 3. I-LIRA: AN IMPLEMENTATION OF LIRA

pler sub-queries, and sub-queries are processed by different microservice
components using their index partitions.

Microservices in Proteus use AntidoteDB as a backend database for
storing indexes as CRDTs. It also provides causality and atomicity guar-
antees for search results (a search query should either observe all the
updates performed within a transaction, or none).

3.2.4 Precision agriculture (Gluk)

(a) Context

The Self Sufficient precision agriculture management for irrigation use
case is applied for irrigation management in Subsurface Drop Irrigation
method (citrus trees cultivation - but can be applied in every farming
activity indoor or outdoor). The water is pumped out from the well (or
other water source) and transmitted to the polymer tubes. The water
is usually used to irrigate multiple farms. However, as every farm has
different characteristics (soil, area, etc.), the irrigation should be adapted
taking account these parameters. For example, some parcel of land may
need more water while other parcels need less water.

In order to avoid under-watering, the farmers usually irrigate more
time than it is necessary. This raises the issues of water waste, energy
waste (electricity for the pump), and drainage problems (since the same
time many farmers irrigating and the water in the underground water
dump is not enough for everyone). In this situation, there is a need to
know which part of the farm is either over-watered or under-watered. A
non-proper irrigation could affect 25-30% of the annual production.

(b) System model and Requirements

In a self sufficient management system, the farm is divided in clusters
with a network of tubes. In every tube, a smart node is installed con-
taining the management unit, sensors and actuators. In this way, the
farm is divided into zones. When a zone is sufficiently irrigated (given
the retrieved value from the sensor), the actuators stop the water flow
into the relevant parts of the tubes. Meanwhile, the under-watered zones
of the farm continue to be irrigated. The sensor array has basic com-
putational abilities at the sensor edge nodes, and basic communication
abilities between sensor nodes (e.g., Wifi or Zigbee). Decent node reliabil-
ity is provided by off-the-shelf hardware.

The core management ability must be completely autonomous and
low-cost (no need for PC or cloud connectivity), i.e., it should run on the
sensor array itself. The system must be able to be installed by the farmer
without any configuration capabilities from his side (zero config). This
gives modularity for the farmer: he pays only for what he needs, and
Internet connectivity is not needed for basic management abilities.

LightKone Reference Architecture LiRA v0.91, 2019 Page 29

CHAPTER 3. I-LIRA: AN IMPLEMENTATION OF LIRA

Figure 3.2.4: Precision agriculture (Gluk)

(c) Use-Case Implementation

As shown in Figure 3.2.4, Gluk built a proof of concept solution us-
ing three i-LiRA artefacts: Achlys, Yggdrasil, and Grisp. Achlys imple-
ments a task model on top of a reliable convergent replicated key/value
store (called Lasp) that runs with very little computational resources. It
runs on top of a communication layer, called Partisan, that ensures reli-
able hybrid-gossip communication despite highly unreliable connectivity.
Achlys also uses basic connectivity and self-management of the system
membership via Yggdrasil. The entire node is run on GRiSP software and
hardware board that provides native Erlang functionality running with
low power and basic processor, memory, and wireless connectivity. This
entire software and hardware stack used in this use case was (partially
or fully) developed within LightKone.

With this solution, the system is able to perform in an autonomous
fashion. GRiSP nodes can be powered by solar batteries, whereas occa-
sional problems in edge nodes are solvable by the redundant nature of
Lasp data store used by Achlys. Lasp is always convergent thanks to the
periodic regeneration of individual components through the underlying
robust hybrid-gossip layer (provided through Partisan and Yggdrasil).

Note that additional management policy control is provided by a con-
nection to the sensor array, either by PC, a cloud, or even a mobile device
in close vicinity to one of the sensors, which the farmer can rely on at any
time.

LightKone Reference Architecture LiRA v0.91, 2019 Page 30

CHAPTER 3. I-LIRA: AN IMPLEMENTATION OF LIRA

3.2.5 NoStop RFID (Stritzinger)

(a) Context

Industrial automation systems, such as smart conveyor belts, guide the
production steps for a single work piece in manufacturing using RFID
tags. These systems communicate with a reusable RFID tag mounted on
work piece carriers for manufacturing tracking. Such industrial automa-
tion systems can be very large scale. As such, performance and reliability
are of utmost concerns. For a large factory with thousands of processing
stations and inter-connecting conveyor belts, the least amount of dead
time or congestion can cause long reaching inefficiencies.

Traditionally, such a conveyor belt system stores a product-related
state on the memory of the RFID tag, which gets transported around to-
gether with the product. The memory on the tag is the canonical data
storage. As a result, every piece of information, which is needed on sta-
tions further down the path, must be written to the tag. This process
takes time and is somewhat unreliable (because of radio interference).
Therefore all changes to the tag data must also be verified, which means
that the tag must stay close to the antenna until all read and write op-
erations have been performed and verified, delaying the overall manufac-
turing process.

Stritzinger developed a novel efficient solution exploiting LiRA inno-
vations. Although Stritzinger did not make use of i-LiRA artefacts, they
implemented their own proprietary implementations following the LiRA
principles.

(b) Data and system model

In a traditional implementation of a smart conveyer belt, the RFID tag is
used as the main data storage device in the system. This means that all
data is written to the tag, and physically transported on the conveyor belt
to the next antenna (typically located at the next manufacturing station).

This implementation requires the work piece carrier to stop very often,
to either read more data, or reliably write new data. For write operations
to be reliable, a read, modify, write, read, verify sequence must always be
performed. This, in turn, means that the throughput and utilization of
the factory is reduced by constant waiting times, which occur before and
after each processing station, or in the station itself. In either case, this
results in unnecessary pauses, where the processing station is idle.

Each node (i.e., antenna) of the conveyor belt system can maintain
a local cache for each tag that appears. These local caches provide an
optimization abstraction over the block structure of most modern tags,
which allows the system to speed up reading procedures (if the same
block is read several times) and to handle short disconnections between
the antenna and the tag. This can be seen as a purely local software
optimization of the raw low-level antenna API.

LightKone Reference Architecture LiRA v0.91, 2019 Page 31

CHAPTER 3. I-LIRA: AN IMPLEMENTATION OF LIRA

Binary Space

Ve
rs

io
n

1
2
3
4
ƒ
n

0 1 2 3 4 5 6 7 ꔇ n

Figure 3.2.5: Illustration showing several stacked sparse binary layers.

To address these limitations, Stritzinger implemented a solution in
which the delay produced by constant read and write operations in tags
is reduced to become close to zero. To achieve this, instead of using tags
as the canonical storage device, tags only contain a single piece of in-
formation, a logical clock that acts as a version number. The remainder
of data is stored within the network, at each node, on a data structure
that follow the convergence properties of CRDTs in LiRA. This can be
viewed as a distributed (virtual) tag. This also means that data between
nodes must be synchronized. To this end, Stritzinger implemented solu-
tion contains a synchronization protocol that follows the concepts found
in hybrid gossip, being efficient under normal network conditions and
quickly allowing to recover under adverse network conditions (by resort-
ing to additional redundancy).

(c) Use-case implementation

Stritzinger developed an anti-entropy protocol following the hybrid gossip
model suggested in LiRA. This protocol enables the efficient and fast dis-
semination of information related to each (physical) tag. To achieve this,
the protocol combines different gossip approaches by using three types
of messages: hello, update, and request. Update messages are efficiently
disseminated by only disseminating the latest information, and resort-
ing to request and hello messages to recover missing updates quickly
(through a less efficient procedure) only when necessary. This ensures
efficiency when in a stable environment, and fast recovery, at the cost
of additional communication, when there are changes in the execution
environment.

To enable the efficient dissemination of updates, Stritzinger imple-
mented a convergent data structure: a stacked sparse binaries, as de-
picted in Figure 3.2.5, to efficiently store the data of tags. (A sparse
binary is a list of ranged values that differ from any designated default
value the space might have, e.g., all zeroes.) This structure allows for
storing only the changes made to the binary. Furthermore, the sparse
binaries can be stacked on top of each other to represent changes over

LightKone Reference Architecture LiRA v0.91, 2019 Page 32

CHAPTER 3. I-LIRA: AN IMPLEMENTATION OF LIRA

time to a binary space.
The stacked sparse binary structure follows the convergence princi-

ples of LiRA CRDTs. It can be viewed as a delta-based CRDT with Last-
Writer-Wins (LWW) semantics. At each node, the replica stores for each
tag, the stacked sparse binary values, each one associated with a version
number. Whenever the data associated with a tag gets updated in a node,
that node gossips to each of the neighboring nodes the layers that might
be missing in that node (according to the latest received neighbor clock).
What this process does is computing the delta that needs to be propa-
gated to each of the neighbors to make it up-to-date. When an update
is received in a node, the received layers are merged to the local replica.
The value of each element of the binary space is that of the update with
the largest timestamp that modified that element.

LightKone Reference Architecture LiRA v0.91, 2019 Page 33

CHAPTER 3. I-LIRA: AN IMPLEMENTATION OF LIRA

Table 3.1.1: Sumamry of the main i-LiRA artefacts.

Artefact Description Previous SOTA Contribution
AntidoteDB A highly available geo-distributed

database
Geo-replicated
databases with dif-
ferent consistency
semantics, typi-
cally either weaker
(EC) or stronger
(Serializability
within shards)

Causal transactions + CRDTs

WebCure Client-side data replication for web ap-
plications using AntidoteDB as back-
endTODO: Annette

Read-only caches /
roll back on up-
dates on conflict

Simplified programming model
with conflict resolution on
CRDTs

Legion A framework for extending web appli-
cations to the edge, by running code in
the client devices that interact directly.

Systems that sup-
port disconnected
operation, but
no peer-to-peer
synchronization;
Mobile systems
that support peer-
to-peer interaction,
but that are not de-
signed to support
web applications.

Simple programming model
for extending web application
with peer-to-peer synchroniza-
tion.Big delta CRDTs.Model
for interacting with cloud ser-
vices.Security mechanisms.

EdgeAnt A consistent, mutable cache at the
edge. Data is backed up in Antidote.
EdgeAnt supports the same API as An-
tidote, and guarantees the same TCC+
consistency. A cache can transpar-
ently disconnect and reconnect to any
data centre. Ongoing work: (i) A client
has the option to place any individual
computation, either at the edge or in a
data centre; both guarantee the same
consistent view of data. (ii) Co-located
EdgeAnt clients can collaborate in a
group, even disconnected from the in-
frastructure, and can migrate between
groups.

Edge caching for
immutable data; or
non-AP ”sticky” or
ad-hoc caches with
ill-defined guaran-
tees

Consistent, mutable AP cache.
Uniform (DC to edge) AP guar-
antees Client can migrate Place
computation @edge or @cen-
tre P2P group communication
Client can change groups

Yggdrasil Framework for designing distributed
protocols for ad-hoc networking.

Frameworks for
developing dis-
tributed protocol,
but no specific
one for wireless
ad-hoc network-
ing.Multiple pro-
tocols for ad-hoc
networking.

Simple programming model for
defining new protocol, hiding
the complexity of configuring
wireless radios and exchanging
messages among multiple com-
munication.parties.

Proteus A geo-distributed framework for ana-
lytics computations on federated data
stores. Proteus maintains materialized
views and performs stateful data-flow
computation. Admins place computa-
tion and data according to SLA consid-
erations.

Apache
Spark,Distributed
search for fed-
erated clouds,
Federated query
processing on
linked data,Lasp??

Bidirectional data-flow com-
putations using materialized
views stored as CRDTs. Mod-
ular distributed architecture
that enables flexible data and
computation placement in
geo-distributed systems.

Grisp A Unikernel approach running the Er-
lang VM directly on smaller hardware
without intervening operating system
level. There is a software stack that
allows for mixed critical systems with
hard and soft real-time parts. A eval-
uation and development board for this
was developed outside the project and
provided to partners.

Running Erlang
on Embedded
Linux like operat-
ing systems. Soft
real-time only.

Erlang on smaller IoT devices
which wouldn’t be able to run
Linux. Erlang as part of mixed
critical systems. Preparation for
allowing hard real-time Erlang
processes.

Achlys Autonomous management of generic
computations in light edge applica-
tions.

SOTA edge applica-
tions do not run on
sensor networks,
but on gateways
that manage these
networks.

Resilient data storage and re-
silient communication directly
on sensor networks; generic
distributed task model; au-
tonomous membership man-
agement; function-as-data ap-
proach.

LightKone Reference Architecture LiRA v0.91, 2019 Page 34

4. Relationship to State of the Art

State of the art of LightKone reference architecture (LiRA) is addressed in
details in Sections 2 and 3. For completeness, we summarize the rela-
tion to state of the art focusing on the data management aspect that is a
key contribution of in LightKone. Being a promising extension to cloud
computing, fog and edge computing have been very active areas in re-
search and industry. Consequently, several edge/fog architectures have
been proposed in SOTA like the OpenFog Reference Architecture (Open-
Fog RA) [12], Edge Foundry [15], Microsoft Azure IoT [22], Amazon IoT
Green grass [4], ECC Edge Computing [11], and ETSI MEC [14]. How-
ever, there is an existing gap in all these architectures in the data man-
agement level of the application layer in which data cannot be efficiently
shared/replicated unless through an upper layer intermediary (a higher
layer fog node or the cloud center). This represents a single point of fail-
ure and imposes unacceptable response time to edge applications. The
main innovation in LiRA is the support for generic application-level data
and computation through developing artifacts and software components
that support replicated data that is highly available and proven to con-
verge at once. Importantly, LiRA allows data sharing across the hierarchy
of the edge system as well as at the same layer. In addition, LiRA artifacts
span a wide spectrum of heavy, medium, and light edge/fog devices thus
supporting a wide range of applications and patterns.

LiRA is compatible and complementary to SOTA architectures. For in-
stance, the OpenFog RA,[12] is a generic architecture that set standards
and recommendations to the required features and properties at the en-
tire software stack. It emphasizes the importance of autonomy and avail-
ability without proposing solutions to them at the application layer as in
LiRA. In the discussed use cases, OpenFog RA highlights the difficulty
of data sharing at the same edge layer, which LiRA provides in particu-
lar. On the other hand, Microsoft Azure IoT is based on a time streaming
where data is basically pushed to the cloud center for processing. To im-
prove response times, a ”warm” database is used to provide data for edge
IoT devices mainly, for a recent date and time range, aggregated data for
one or many devices, etc. Therefore, there is no support for generic edge
applications semantics or data management at the edge/fog layer as we
do in LiRA. ECC Edge Computing follows the Azure IoT approach ensur-

35

CHAPTER 4. RELATIONSHIP TO STATE OF THE ART

ing a fast time series (centralized) database that stores immutable data
associated with timestamp for speed.

Contrary to Azure IoT and ECC Edge Computing, Amazon IoT Green-
grass extends Amazon’s AWS cloud to edge devices, allowing edge de-
vices to run AWS Lambda functions, execute predictions based on ma-
chine learning models with or without connection to the cloud center.
Edge nodes can also integrate with third party applications but with-
out data sharing as in LiRA. EdgeX Foundry is another edge framework
maintained by Linux Foundation with the ambition to be a key edge/fog
open source platform for IoT applications. Data in EdgeX is only han-
dled across layer (north-west) leaving unilateral data management to a
future plan. Other platforms like FIWARE FogFlow and ETSI MEC do not
make use of replicated data and thus focus more on data at the cloud,
databases, or corresponding dissemination.

LightKone Reference Architecture LiRA v0.91, 2019 Page 36

5. Final Remarks

This paper has presented a first vision of the LightKone Reference Ar-
chitecture (LiRA) and its initial reference implementation i-LiRA. We have
discussed how the software artifacts of i-LiRA have been used to build dif-
ferent use cases of edge computing across different application domains.
We note that LiRA, and naturally i-LiRA, are continuous evolving entities
that are currently being evolved actively by the LightKone consortium and
their partners.

LiRA, and i-LiRA, are not closed entities. They are complementary
to existing reference architectures, and open for integration with other
software artifacts produced by the community. Our main goal with the
presentation of LiRA is to identify and address, in a provably correct
and efficient way, a key challenge in edge computing: data management.
The current proposal of LiRA is based on two simple and complementary
ideas: decentralized lateral data sharing and convergent vertical seman-
tics. These ideas can also be materialized using different techniques,
and this will empower the community to have additional flexibility when
building their edge-enabled applications.

37

5. Bibliography

[1] Raka Mahesa (IBM). How cloud, fog, and mist comput-
ing can work together. https://developer.ibm.com/dwblog/2018/
cloud-fog-mist-edge-computing-iot/, 2018. Accessed: 2018-05-16.

[2] D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li, T. Crain, A. Bie-
niusa, N. Preguiça, and M. Shapiro. Cure: Strong semantics meets
high availability and low latency. In Proceeding of the IEEE 36th In-
ternational Conference on Distributed Computing Systems, ICDCS’16,
pages 405–414, Nara, Japan, 2016.

[3] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Delta State
Replicated Data Types. J. Parallel Distrib. Comput., 111:162–173,
2018.

[4] Amazon. Amazon IoT Greengrass reference architecture, 2018. https:
//aws.amazon.com/greengrass/.

[5] IEEE Standards Association. IEEE 1934-2018 - IEEE Standard
for Adoption of OpenFog Reference Architecture for Fog Computing,
2018. https://standards.ieee.org/standard/1934-2018.html.

[6] Hagit Attiya, Faith Ellen, and Adam Morrison. Limitations of highly-
available eventually-consistent data stores. IEEE Transactions on
Parallel and Distributed Systems, 28(1):141–155, 2017.

[7] Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker. Making
operation-based crdts operation-based. In Distributed Applications
and Interoperable Systems - 14th IFIP WG 6.1 International Confer-
ence, DAIS 2014, Held as Part of the 9th International Federated Con-
ference on Distributed Computing Techniques, DisCoTec 2014, Berlin,
Germany, June 3-5, 2014, Proceedings, pages 126–140, 2014.

[8] David Bol. Ecological transition in ict: A role for open hardware?
Invited talk at RISC-V 2019, Paris, France, October 2019.

[9] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli.
Fog computing and its role in the internet of things. In Proceedings
of the First Edition of the MCC Workshop on Mobile Cloud Computing,
MCC ’12, pages 13–16, New York, NY, USA, 2012. ACM.

38

https://developer.ibm.com/dwblog/2018/cloud-fog-mist-edge-computing-iot/
https://developer.ibm.com/dwblog/2018/cloud-fog-mist-edge-computing-iot/
https://aws.amazon.com/greengrass/
https://aws.amazon.com/greengrass/
https://standards.ieee.org/standard/1934-2018.html

BIBLIOGRAPHY

[10] Cisco. Cisco visual networking index: Global mobile data traffic fore-
cast update. https://tinyurl.com/zzo6766, 2016.

[11] Edge Computing Consortium and Alliance of Industrial Internet.
ECC Reference Architecture, 2018. http://en.ecconsortium.net/
Uploads/file/20180328/1522232376480704.pdf.

[12] Open Fog Consortium. OpenFog Reference Architecture, 2017.
https://www.iiconsortium.org/pdf/OpenFog Reference Architecture
2 09 17.pdf.

[13] The Syncfree Consortium. Antidote db, 2018. http://syncfree.github.
io/antidote/.

[14] ETSI. MEC Reference Architecture, 2018. https://www.etsi.org/.

[15] Linux Foundation. EdgeX Foundry Reference Architecture, 2018.
https://docs.edgexfoundry.org/Ch-Architecture.html.

[16] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibil-
ity of consistent, available, partition-tolerant web services. SIGACT
News, 33(2):51–59, 2002.

[17] Leslie Lamport. Time, Clocks, and the Ordering of Events in a Dis-
tributed System. Commun. ACM, 21(7), July 1978.

[18] J. Leitão, J. Pereira, and L. Rodrigues. Epidemic broadcast trees.
In Proceedings of the 26th IEEE International Symposium on Reliable
Distributed Systems, pages 301 – 310, Beijing, China, October 2007.

[19] João Leitão, José Pereira, and Luis Rodrigues. HyParView: A mem-
bership protocol for reliable gossip-based broadcast. In Dependable
Systems and Networks, 2007. DSN’07. 37th Annual IEEE/IFIP Inter-
national Conference on, pages 419–429. IEEE, 2007.

[20] Christopher Meiklejohn and Heather Miller. Partisan: Enabling
cloud-scale erlang applications. arXiv preprint arXiv:1802.02652,
2018.

[21] Christopher Meiklejohn and Peter Van Roy. Lasp: A language for
distributed, coordination-free programming. In Proceedings of the
17th International Symposium on Principles and Practice of Declara-
tive Programming, pages 184–195. ACM, 2015.

[22] Microsoft. Azure IoT reference architecture,
2018. http://download.microsoft.com/download/A/4/D/
A4DAD253-BC21-41D3-B9D9-87D2AE6F0719/Microsoft Azure IoT
Reference Architecture.pdf.

LightKone Reference Architecture LiRA v0.91, 2019 Page 39

http://en.ecconsortium.net/Uploads/file/20180328/1522232376480704.pdf
http://en.ecconsortium.net/Uploads/file/20180328/1522232376480704.pdf
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
http://syncfree.github.io/antidote/
http://syncfree.github.io/antidote/
https://www.etsi.org/
https://docs.edgexfoundry.org/Ch-Architecture.html
http://download.microsoft.com/download/A/4/D/A4DAD253-BC21-41D3-B9D9-87D2AE6F0719/Microsoft_Azure_IoT_Reference_Architecture.pdf
http://download.microsoft.com/download/A/4/D/A4DAD253-BC21-41D3-B9D9-87D2AE6F0719/Microsoft_Azure_IoT_Reference_Architecture.pdf
http://download.microsoft.com/download/A/4/D/A4DAD253-BC21-41D3-B9D9-87D2AE6F0719/Microsoft_Azure_IoT_Reference_Architecture.pdf

BIBLIOGRAPHY

[23] Nuno Preguiça, Carlos Baquero, and Marc Shapiro. Conflict-free
replicated data types. To appear in Encyclopedia of Big Data Tech-
nologies.

[24] Marc Shapiro, Nuno Preguiça, Carlos Baquero, Marek Zawirski,
et al. A comprehensive study of convergent and commutative repli-
cated data types. 2011.

[25] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision
and challenges. IEEE Internet of Things Journal, 3(5):637–646, Oct
2016.

[26] W. Tärneberg, V. Chandrasekaran, and M. Humphrey. Experiences
creating a framework for smart traffic control using aws iot. In 2016
IEEE/ACM 9th International Conference on Utility and Cloud Comput-
ing (UCC), pages 63–69, Dec 2016.

[27] Shanhe Yi, Cheng Li, and Qun Li. A survey of fog computing: Con-
cepts, applications and issues. In Proceedings of the 2015 Workshop
on Mobile Big Data, Mobidata ’15, pages 37–42, New York, NY, USA,
2015. ACM.

LightKone Reference Architecture LiRA v0.91, 2019 Page 40

	Introduction
	Overview
	Data management problem
	LiRA solutions for data management
	LiRA white paper contributions

	LiRA Reference Architecture
	Introduction
	Why another reference architecture?
	LiRA Principles and Solutions
	LiRA Principles
	LiRA Solutions

	LiRA Edge Layers
	Near edge
	Far edge
	Mid edge

	i-LiRA: an Implementation of LiRA
	Architecture View
	Use-case View
	Distributed monitoring for community networks (Guifi.net)
	Multi-master geo-distributed storage (Scality)
	Multi-cloud metadata search (Scality)
	Precision agriculture (Gluk)
	NoStop RFID (Stritzinger)

	Relationship to State of the Art
	Final Remarks
	Bibliography

